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ABSTRACT 

Fourier series is a method that can solve for many problems especially for solving 
various differential equations of interest in science and engineering. However, Gibbs 
oscillations will be occurs when using a truncated Fourier series. Thus, we solve the 

problems by using the corrected Fourier series. Here, we want to compare the results 
between the solutions that we get from Fourier series method and Corrected Fourier 
series method. The comparison between these two methods will be our finding. 
 
Keywords: Fourier series, corrected fourier series, Gibbs oscillation. 

 

 

1. INTRODUCTION 

An ordinary differential equation (ODE) that contains one or more 

derivatives of an unknown function, which we call ( )y x  for x  is the 

independent variable. An ODE is said to be of order n  if the n th derivative 

of the unknown function y  is the highest derivative of y  in the equation. 

We can write them as 

    ( , , ) 0F x y y′ =                 (1) 

  
 A partial differential equation (PDE) is a mathematical equation 

having partial derivatives with respect to more than one variable.  Consider 

a general form of the second-order linear partial differential equation as 
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x x y y x y

 ∂ ∂ ∂ ∂ ∂
+ + + + + = 

∂ ∂ ∂ ∂ ∂ ∂ 
      

                                                                                                      (2) 

 

Then we often need to specify some supplementary conditions, which 
called boundary value conditions or initial value conditions to solve the 

problem. But, by applied method of Galerkin with corrected Fourier series 

as its basis function, we do not need to often specify any supplementary 

conditions. The function approximation is needed to eliminate the Gibbs 
phenomenon that occurs when using a truncated Fourier series or other 

eigenfunction series at a simple discontinuity.  

 

 

2. FOURIER AND CORRECTED FOURIER SERIES 

METHOD 

Fourier series decomposes a periodic function into a sum of simple 

oscillating functions, namely sines and cosines. Fourier series are very 
important to the engineer and physicist because they allow the solution of 

ODEs in connection with forced oscillations and the approximation of 

periodic functions, (Kreyszig (2011)). Meanwhile, the corrected Fourier 

series is a combination of the uniformly convergent Fourier series and the 
correction function consists of algebraic polynomials and Heaviside step 

functions and is required by the aperiodicity at the endpoints (i.e., 

0(0) ( )f f x≠ ) and the finite discontinuities in between, (Zhang (2007)). 

 

2.1 Fourier series 

To define Fourier series, we introduce a function )(xf  as a periodic 

function. Suppose that )(xf  is a given function of period π2 , then 

 

             ( )∑
∞

=

++=
1

0 sincos)(
n

nn nxbnxaaxf                              

(3) 

 

where the Fourier coefficients of )(xf  given by the Euler formulas 
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2.2 Corrected Fourier series 

Suppose )(xy  is any mth quasi-smooth function, and has possible 

discontinuities at jx ),,2,1( Jj …= . The theorem of the corrected Fourier 

series in (Zhang (2007)) states that a mth quasi-smooth function can be 

approximated uniformly by a corrected Fourier series consisting of three 

parts, which are an mth uniformly convergent Fourier series, a no-more-
than (m+1) th-order polynomial, and an mth integral of the Heaviside step 

functions at the discontinuities. Therefore, )(xy is approximated by the 

following corrected Fourier series, 
 

   
( )

( )∑∑∑ −
−
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+
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l
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xi
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!!
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0

2

x

n
n

π
α =                                                                                (4) 

 

where nA  is the Fourier projection of ( )y x  to the basis function 
xi ne

α
, that 

is 

∫
−=

0

0
0

)(
1 x

xi

n dxexy
x

A nα
              (5) 

in the interval ],0[ 0x . 

 

 

3. CORRECTED FOURIER SERIES METHOD FOR 

SOLVING TWO UNKNOWNS PROBLEM 

At first, we consider the general form of the second order linear 

PDEs in the region  0 0[0, ] [0, ],x t×   
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where ),( txpl with 6,,2,1 …=l and ),( txf are quasi-smooth functions 

with two unknowns having the discontinuities at ( 1,2, , )
j

x j J= …  and 

0 0 0( 1,2, , ).
j

x j J= …  

 

Definition 1: Any function, ),( txφ on the basis function 
( )n mi x t

e
α β+

in the 

region 0 0[0, ] [0, ],x t×  generally written as 

 

 
( )0 0

0
0 0

0 0

1
( , ) ( , ) n m

t x i x t

nm
F x t x t e dxdt

x t

α βφ φ − +
= ∫ ∫              (7) 

is called the Fourier projection where 
0

2
n

n

x

π
α =  and 

0

2
m

m

t

π
β = . 

 

Lemma 1.  Assume ( , )u x tɶ  is the solution of equation (6). The necessary 

and sufficient conditions for equation (3) with ( , )u x tɶ  to be equivalent to its 

Fourier projections 

       

{ }1 1
( , ) ( , )

nmnm
F L u x t F f x t

− −=               (8) 

 

that is, ( , )u x tɶ  satisfies the consistency conditions of the endpoints and 

discontinuities 0 0 0 0

0 0 0 0{ ( , )} ( , ) || | |x t x t
L u x t f x t=ɶ  

and { } 0 0

0 0

0 0 0 0

0 0 00
( , ) ( , )

j j j j

j j jj

x t x t

t x tx
L u x t f x t

+ + + +

− − −−
=ɶ  with 1,2, , ,j J= …  

0 01,2, ,j J= … where
j

x and 
0j

t denote the finite discontinuities in 

either ( , )
l

p x t  and ( , )f x t  and 
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0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

( , ) ( , ) (0, )

( ( , ) (0, )) ( ( ,0) (0,0))

( , ) (0,0) (0, ) ( ,0).

x t t
f x t f x t f t

f x t f t f x f

f x t f f t f x

≡ −

≡ − − −

≡ + − −

             (9) 

 

Satisfying the consistency conditions { } ),(),(~ txftxuL −  is a periodic, quasi-

smooth continuous function whose Fourier series is uniformly convergent 

without Gibbs oscillation. This means that { }( , ) ( , )L u x t f x t−ɶ is equivalent to 

its Fourier series. Thus Equation (6) ≡Equation (8). 

In order ( , )u x t  to be a solution of equation (6): 

i. ( , )u x t and its first derivative, 
( , )u x t

x

∂

∂
 and 

( , )u x t

t

∂

∂
 must be continuous, 

and 

ii. The second derivative of ( , ),u x t
2

2

( , )
,

u x t

x

∂

∂
 

2 ( , )u x t

x t

∂

∂ ∂
 and 

2

2

( , )u x t

t

∂

∂
  

cannot have any discontinuities other than 
j

x  and 
0
.

j
t  

 

Therefore, ( , )u x t  must be second quasi-smooth function with two variables 

( x  and t ) and has possible discontinuities at 0( 1,2, , )
j

x j J= …  and 

0 0 0( 1,2, , ).j j J= …  

 

3.1 Derivative of the corrected Fourier series 

According to (Zhang (2007)), Theorem 2.2 state that any m -th quasi-

smooth continuous function can be approximated uniformly by the sum of 

an m -th uniformly convergent Fourier series and a polynomial no more 

than ( 1)m + -th order. This theorem has been proof for one unknown. Now, 

we extend this theorem to the case with two unknowns. 

 

Theorem 1 

Any m -th 2
nd

 quasi-smooth continuous function 0( , ) ([0, ],[0, ])
m m

u x t S x t∈   

can be approximated uniformly by the sum of an m -th uniformly 

convergent Fourier series and a polynomial no more than ( 1)m + -th order 
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Proof 

At first, the function ( , )u x t  is a second quasi-smooth continuous function 

with respect to .x  Therefore, for any 0[0, ],t t∈   

 

   
2 3

1 2 3
( , ) ( ) ( ) ( ) ( )

2! 3!
ni x
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u x t A t e a t x a t a t

α

<∞

= + + +∑            (11) 

 

In the above equation, ( )nA t  and ( )la t  are second quasi-smooth continuous 

function with respect to .t  In equation (11), ( )nA t and ( )la t where 

( 1,2,3)l =  can be further expanded into the following 
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where 
0

2
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n

x

π
α =  and 

0

2
.

m

m
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π
β =  

 

Then, by substituting ( )
n

A t  and ( )
l

a t  into equation (8), we have 
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As in the any other Galerkin methods, the corrected Fourier series will be 

truncated so that n N≤  and m M≤  here after. In Equation (13), nine 
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unknowns 
0ll

d  where 0( , 1,2,3)l l =  are obtained by solving the following 

linear equations 
 

0 0 0 0
0 0 0

0 0

0

3 3

0 0

1 1 0 0 0 0 0

( , )
( , )

( )! ( )!

x t x tl j j jl j

ll jj
l l o

x t u x t
d H l l j j

l j l j x t

− +−

= =

∂
⋅ ⋅ − − =

− − ∂ ∂
∑∑    (14) 

 

where 
0

( , 0,1,2)j j =  and it depends on the boundary values of ( , )u x t  and it 

first and second derivatives only. We can say here that the first three terms 

on the right-hand side of the equation (13) are identically zero caused by the 

periodicity of either ni x
e

α  or 
ti me β
. Then we arrange the nine unknowns 

0ll
d  

into a vector ordered as 
11 12 13 21 22 23 31 32 33

( , , , , , , , , )d d d d d d d d d and the 

equations ordered as when 0,j = then
0

0,1,2,j = when 1,j =  then 
0

0,1,2,j =  

and 2,j =  
0

0,1,2,j =  so that the coefficient matrix of the linear equations 

is up-triangular and can be easily inverted.  
 

3.2 Computation of the coefficients 

Note that when 
0

,
lm l n

a b  and 
0ll

d  are suitable chosen, then Gibbs oscillations 

which often trouble the regular Fourier series method at endpoints and 

discontinuities are eliminated. The coefficients 
nm

A  are readily obtained by 

the following Fourier projection: 
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∑ ∑
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          (15) 

 

Being looked at in the another way, with coefficients ( 1,2,3),
lm

a l =  

)3,2,1( =lalm
, 

0 0( 1,2,3)
l n

b l =  and 
0 0( , 1, 2,3)

ll
d l l =  yet to be determined, 

Equation (13) represents all possible corrected Fourier series solutions of 

Equation (3), which are uniformly convergent until their second derivatives.  

Now we have 2 1N +  and 2 1M + orthogonal conditions by applying 

Fourier projection Equation (7) to Equation (3) ( 2 1N +  and 2 1M + ) times, 

and 01, 1J J+ + consistency conditions (Lemma), (Zhang (2005)). Then, 

( , )u x t  is formally expressed as follows 
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1 1 2 2 0( , ) ( , ) ( , ) ( , )u x t c u x t c u x t u x t= + +                         (16) 
 

where 1c and 2c  are two constants. Viewing 1( , )u x t and 2 ( , )u x t as two 

linearly independent solutions and 0 ( , )u x t  as the specific solution, 

Equation (16) is a general solutions of Equation (3). No boundary 
conditions are explicitly introduced when Equation (16) is obtained. It is 

worthwhile noting that 1( , ),u x t 2 ( , )u x t and 0 ( , )u x t are Galerkin 

approximated solutions by using the corrected Fourier series, (Zhang 

(2007)). 

 

 

4. NUMERICAL PROCEDURE 

We solve the problem by using both method, Fourier and corrected 
Fourier series method. We show the difference between these two methods 

by graph. In problem 1, we consider the function in one variable. In 

problem 2, we are solving the PDEs problem which is heat equation. 

 

Problem 1 

Find the Fourier series of the function 2( ) .f x x=  
 

        
 

 
 

 

 
 

 

 
 

 

 
 

Figure 1 shows the solution of problem 1 by using Fourier series while 

Figure 2 shows the solution by using Corrected Fourier series. The green 

color refers to the function of 2( ) ,f x x= blue color refers to the function 

series after we truncated the series into 3 terms, yellow refers to 5 terms of 
the series and red color refers to 10 terms of the series.  

Figure 1 Figure 2 
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Problem 2 (PDEs Heat Problem) 

         
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

The Figure 3 shows the solution of ( , )u x t  for ( ) 0,f x =  2c = 4cm 2 /sec, 

100=x cm and several values of .t  The Figure 4 shows the solution of 

( , )u x t  for 2( ) 100sin ,
80

x
f x c

π
= = 1.158cm 2 /sec, 80 cm and several values 

of  .t  
 

We can see here that, by using Fourier series, the difference between graphs 

with difference value of t  is very big rather than by using corrected Fourier. 
 

Problem 3 

2
2

2

u u
t

t x

∂ ∂
− =

∂ ∂
 in region [0,80] [0,10]×  

 

 
 

 

 
 

 

 

 
 

 

 

Figure 3 Figure 4 

Figure 5 
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In the Figure 5, we set the value of t equals to 5. 

 

By using corrected Fourier series, and we truncated the series 

for 1, 1n m= = , 2, 2n m= =  and 3, 3.n m= =  From the graph, we can see 

that there is no difference for the solution. Thus, no Gibbs oscillations 

appear for this solution. 

 

 

5. CONCLUSIONS 

The corrected Fourier series (CFS) is free of the Gibbs phenomenon, 

although the quasi-smooth function can be aperiodic and have 

discontinuities in general. CFS are used to solve the problem that have non-
singular coefficients when their exact solution do not always exist. We have 

such solutions that are being uniformly convergent until its m-th derivative 

in the entire region of the equations by using CFS. 
 

 The solutions of the problem that solve by using corrected Fourier 

series are depends on the value of  ( , )u x tɶ  that we assume in the beginning 

of the calculations. So, the difference value of ( , )u x tɶ  will give the 

difference final solution for each problem. 
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